海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在于海洋之中。地球表面积约为5.1×10^8km^2,其中陆地表面积为1.49×10^8km^2占29%;海洋面积达3.61×10^8km^2,以海平面计,全部陆地的平均海拔约为840m,而海洋的平均深度却为380m,整个海水的容积多达1.37×10^9km^3。一望无际的大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏着巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水里,不像在陆地和空中那样容易散失。
简介
海洋能(ocean energy)是海水运动过程中产生的可再生能,主要包括温差能、潮汐能、波浪能、潮流能、海流能、盐差能等。潮汐能和潮流能源自月球、太阳和其他星球引力,其他海洋能均源自太阳辐射。
海水温差能是一种热能。低纬度的海面水温较高,与深层水形成温度差,可产生热交换。其能量与温差的大小和热交换水量成正比。潮汐能、潮流能、海流能、波浪能都是机械能。潮汐的能量与潮差大小和潮量成正比。波浪的能量与波高的平方和波动水域面积成正比。在河口水域还存在海水盐差能(又称海水化学能),入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透,可产生渗透压力,其能量与压力差和渗透能量成正比。
地球表面积约为5.1×10^8km^2,其中陆地表面积为1.49×10^8km^2占29%;海洋面积达3.61×10^8km^2,以海平面计,全部陆地的平均海拔约为840m,而海洋的平均深度却为380m,整个海水的容积多达1.37×10^9km^3。一望无际的大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏着巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水里,不像在陆地和空中那样容易散失。
海洋能有三个显著特点,1.蕴藏量大,并且可以再生不绝。2.能流的分布不均、密度低。3.能量多变、不稳定。
特点
海洋能具有如下特点:
1.海洋能在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小。这就是说,要想得到大能量,就得从大量的海水中获得。
2.海洋能具有可再生性。海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。
3.海洋能有较稳定与不稳定能源之分。较稳定的为温度差能、盐度差能和海流能。不稳定能源分为变化有规律与变化无规律两种。属于不稳定但变化有规律的有潮汐能与潮流能。人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱。潮汐电站与潮流电站可根据预报表安排发电运行。既不稳定又无规律的是波浪能。
4.海洋能属于清洁能源,也就是海洋能一旦开发后,其本身对环境污染影响很小。
主要能量形式
1、潮汐能
因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。
潮汐与潮流能来源于月球、太阳引力,其它海洋能均来源于太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。
潮汐能的主要利用方式为发电,目前世界上最大的潮汐电站是法国的朗斯潮汐电站,我国的江夏潮汐实验电站为国内最大。
2、波浪能
波浪能是指海洋表面波浪所具有的动能和势能,是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能。波浪的能量波高的平方、波浪的运动周期以及迎波面 的宽度成正比。波浪能是海洋能源中能量最不稳定的一种能源。
波浪发电是波浪能利用的主要方式,此外,波浪能还可以用于抽水、供热、海水淡化以及制氢等。
3、海水温差能
海水温差能是指涵养表层海水和深层海水之间水温差的热能,是海洋能的一种重要形 海洋能
式。低纬度的海面水温较高,与深层冷水存在温度差,而储存着温差热能,其能量与温差的大小和水量成正比
温差能的主要利用方式为发电,首次提出利用海水温差发电设想的是法国物理学家阿松瓦尔,1926年,阿松瓦尔的学生克劳德试验成功海水温差发电。1930年,克劳德在古巴海滨建造了世界上第一座海水温差发电站,获得了10kW的功率。
温差能利用的最大困难是温差大小,能量密度低,其效率仅有3%左右,而且换热面积大,建设费用高,目前各国仍在积极探索中。
4、盐差能
盐差能是指海水和淡水之间或两种含盐浓度不同的海水之间的化学电位差能,是以化学能形态出现的海洋能。主要存在与河海交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能中能量密度最大的一种可再生能源。
据估计,世界各河口区的盐差能达30TW,可能利用的有2.6TW。我国的盐差能估计为1.1×10^8kw,主要集中在各大江河的出海处,同时,我国青海省等地还有不少内陆盐湖可以利用。盐差能的研究以美国、以色列的研究为先,中国、瑞典和日本等也开展了一些研究。但总体上,对盐差能这种新能源的研究还处于实验室实验水平,离示范应用还有较长的距离。
5、海流能
海流能是指海水流动的动能,主要是指海底水道和海峡中较为稳定的流动以及由于潮汐导致的有规律的海水流动所产生的能量,是另一种以动能形态出现的海洋能。
海流能的利用方式主要是发电,其原理和风力发电相似。全世界海流能的理论估算值约为10^8kW量级。利用中国沿海130个水道、航门的各种观测及分析资料,计算统计获得中国沿海海流能的年平均功率理论值约为1.4X10^7kW。属于世界上功率密度最大的地区之一,其中辽宁、山东、浙江、福建和台湾沿海的海流能较为丰富,不少水道的能量密度为15~30kW/m^2,具有良好的开发值。特别是浙江的舟山群岛的金塘、龟山和西候门水道,平均功率密度在20kW/m2以上,开发环境和条件很好。
发电方式
海洋热能发电有两种方式:第一种是将低沸点工质加热成蒸汽; 第二种是将温水直接送入真空室使之沸腾变成蒸汽。蒸汽用来推动汽轮发电机发电,最后从600~1000米深处抽冷水使蒸汽冷凝。
第一种采取闭式循环,第二种采取开式循环。
海水温差发电,1930年在法国首次试验成功,只是当时发出的电能不如耗去的电力多,因而未能付诸实施。现在,许多国家都在进行海水温差发电研究。 实践证明,开式循环比闭式循环有更多的优点:①以温海水作工质,可避免氨或二氯二氟甲烷等有毒物质对海洋的污染;②开式循环系直接接触热交换器,价廉且效率高;③直接接触热交换器可采用塑料制造,在温海水中的抗腐蚀性高;④能产生副产品——蒸馏水。开式循环也有缺点:产生的蒸汽密度低,汽轮机体积大;变成蒸汽的海水排回海洋后,会影响附近生物的生存环境。
海洋温差发电
是以非共沸介质(氟里昂-22与氟里昂-12的混合体)为媒质,输出功率是以前的1.1~1.2倍。一座75千瓦试验工厂的试运行证明,由于热交换器采用平板装置,所需抽水量很小,传动功率的消耗很少,其他配件费用也低,再加上用计算机控制,净电输出功率可达额定功率的70%。一座3000千瓦级的电站,每千瓦小时的发电成本只有50日元以下,比柴油发电价格还低。人们预计,利用海洋温差发电,如果能在一个世纪内实现,可成为新能源开发的新的出发点。
潮汐发电
汹涌澎湃的大海,在太阳和月亮的引潮力作用下,时而潮高百丈,时而悄然退去,留下一片沙滩。海洋这样起伏运动,日以继夜,年复一年,是那样有规律,那样有节奏,好像人在呼吸。海水的这种有规律的涨落现象就是潮汐。
潮汐发电就是利用潮汐能的一种重要方式。据初步估计,全世界潮汐能约有10亿多千瓦,每年可发电2~3万亿千瓦时。我国的海岸线长度达18000千米,据1958年普查结果估计,至少有2800万千瓦潮汐电力资源,年发电量最低不下700亿千瓦时。
世界著名的大潮区是英吉利海峡,那里最高潮差为14.6米,大西洋沿岸的潮差也达4~7.4米。我国的杭州湾的“钱塘潮”的潮差达9米。
据估计,我国仅长江口北支就能建80万千瓦潮汐电站,年发电量为23亿千瓦时,接近新安江和富春江水电站的发电总量;钱塘江口可建500万千瓦潮汐电站,年发电量约180多亿千瓦时,约相当于10个新安江水电站的发电能力。
早在12世纪,人类就开始利用潮汐能。法国沿海布列塔尼省就建起了“潮磨”,利用潮汐能代替人力推磨。随着科学技术的进步,人们开始筑坝拦水,建起潮汐电站。
法国在布列塔尼省建成了世界上第一座大型潮汐发电站,电站规模宏大,大坝全长750米,坝顶是公路。平均潮差8.5米,最大潮差13.5米。每年发电量为5.44亿千瓦时。
中国解放后在沿海建过一些小型潮汐电站。例如,广东省顺德县大良潮汐电站(144千瓦)、福建厦门的华美太古潮汐电站(220千瓦)、浙江温岭的沙山潮汐电站(40千瓦)及象山高塘潮汐电站(450千瓦)。
波力发电
“无风三尺浪”是奔腾不息的大海的真实写照。海浪有惊人的力量,5米高的海浪,每平方米压力就有10吨。大浪能把13吨重的岩石抛至20米高处,能翻转1700吨重的岩石,甚至能把上万吨的巨轮推上岸去。
海浪蕴藏的总能量是大得惊人的。据估计地球上海浪中蕴藏着的能量相当于90万亿千瓦时的电能。
我国的海洋能
我国海洋能开发已有近40年的历史,迄今建成的潮汐电站8座,80年代以来浙江、福建等地对若干个大中型潮汐电站,进行了考察、勘测和规化设计、可行性研究等大量的前期准备工作。总之,我国的海洋发电技术已有较好的基础和丰富的经验,小型潮汐发电技术基本成熟,已具备开发中型潮汐电站的技术条件。但是现有潮汐电站整体规模和单位容量还很小,单位千瓦造价高于常规水电站,水工建筑物的施工还比较落后,水轮发电机组尚未定型标准化。这些均是我国潮汐能开发现存的问题。其中关键问题是中型潮汐电站水轮发电机组技术问题没有完全解决,电站造价亟待降低。
我国波力发电技术研究始于70年代,80年代以来获得较快发展,航标灯浮用微型潮汐发电装置已趋商品化,现已生产数百台,在沿海海域航标和大型灯船上推广应用。与日本合作研制的后弯管型浮标发电装置,已向国外出口,该技术属国际领先水平。在珠江口大万山岛上研建的岸边固定式波力电站,第一台装机容量3kW的装置,1990年已试发电成功。“八五”科技攻关项目总装机容量20kW的岸式波力试验电站和8kW摆式波力试验电站,均已试建成功。总之,我国波力发电虽起步较晚,但发展很快。微型波力发电技术已经成熟,小型岸式波力发电技术已进入世界先进行列。但我国波浪能开发的规模远小于挪威和英国,小型波浪发电距实用化尚有一定的距离。
潮流发电研究国际上开始于70年代中期,主要有美国、日本和英国等进行潮流发电试验研究,至今尚未见有关发电实体装置的报导。我国潮流发电研究始于70年代末,首先在舟山海域进行了8kW潮流发电机组原理性试验。80年代一直进行立轴自调直叶水轮机潮流发电装置试验研究,目前正在采用此原理进行70kW潮流试验电站的研究工作。在舟山海域的站址已经选定。我国已经开始研建实体电站,在国际上居领先地位,但尚有一系列技术问题有待解决。
近20多年来,受化石燃料能源危机和环境变化压力的驱动,作为主要可再生能源之一的海洋能事业取得了很大发展,在相关高技术后援的支持下,海洋能应用技术日趋成熟,为人类在下个世纪充分利用海洋能展示了美好的前景。我国有大陆海岸线长达18000多公里,有大小岛屿6960多个,海岛总面积6700平方公里,有人居住的岛屿有430多个,总人口450多万人。沿海和海岛既是外向型经济的基地,又是海洋运输和开发海洋的前哨,并且在巩固国防,维护祖国权益上占有重要地位。改革开放以来,随着沿海经济的发展,海岛开发迫在眉睫,能源短缺严重地制约着经济的发展和人民生活水平的提高。外商和华侨因海岛能源缺乏,不愿投资;驻岛部队用电困难,不利于国防建设;特别是西沙、南沙等远离大陆的岛屿,依靠大陆供应能源,因供应线过长,诸多不便,非常艰苦。为了保证沿海与海岛经济持久快速地发展及人民生活水平的不断提高,寻求解决能源供应紧张的途径已刻不容缓。
我国海洋能的利用技术现状
资料显示,我国从20世纪80年代开始,在沿海各地区陆续兴建了一批中小型潮汐发电站并投入运行发电。其中最大的潮汐电站是1980年5月建成的浙江省温岭市江厦潮汐试验电站,它也是世界已建成的较大双向潮汐电站之一。总库容490万立方米,发电有效库容270万立方米。这里的最大潮差8.39米,平均潮差5.08米;电站功率3200千瓦。据了解,江厦电站每昼夜可发电14~15小时,比单向潮汐电站增加发电量30%~40%。江厦电站每年可为温岭、黄岩电力网提供100亿瓦/小时的电能。
除潮汐能外,重点开发波浪能和海水热能。统计显示,海浪每秒钟在1平方千米海面上产生20万千瓦的能量,全世界海洋中可开发利用的波浪约为27—30亿千瓦,而我国近海域波浪的蕴藏量约为1.5亿千瓦,可开发利用量约3000—3500万千瓦,目前,一些发达国家已经开始建造小型的波浪发电站。
而海水热能是海面上的海水被太阳晒热后,在真空泵中减压,使海水变为蒸汽,然后推动蒸汽轮机而发电。同时,蒸汽又被引上来,冷却后回收为淡水。这两项技术我国正在研究和开发中。
海洋能的优缺点
海洋能概述:开发利用潮汐、海流、海岸线和近海波浪的能量。
海洋能缺点:获取能量的最佳手段尚无共识,大型项目可能会破坏自然水流、潮汐和生态系统。
海洋能优点:取之不竭的可再生资源,潮汐能源有规律可循,开发规模大小均可。海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
【独家稿件声明】凡注明“凤凰网财经”来源之作品(文字、图片、图表或音视频),未经授权,任何媒体和个人不得全部或者部分转载。如需转载,请与凤凰网财经频道(010-84458352)联系;经许可后转载务必请注明出处,违者本网将依法追究。